Optimization of process parameters in the abrasive waterjet machining using integrated SA-GA

نویسندگان

  • Azlan Mohd Zain
  • Habibollah Haron
  • Safian Sharif
چکیده

In this study, Simulated Annealing (SA) and Genetic Algorithm (GA) soft computing techniques are integrated to estimate optimal process parameters that lead to a minimum value of machining performance. Two integration systems are proposed, labeled as integrated SAGA -type1 and integrated SAGA -type2. The approaches proposed in this study involve six modules, which are experimental data, regression modeling, SA optimization, GA optimization, integrated SAGA -type1 optimization, and integrated SAGA -type2 optimization. The objectives of the proposed integrated SAGA -type1 and integrated SAGA -type2 are to estimate the minimum value of the machining performance compared to the machining performance value of the experimental data and regression modeling, to estimate the optimal process parameters values that has to be within the range of the minimum and maximum process parameter values of experimental design, and to estimate the optimal solution of process parameters with a small number of iteration compared to the optimal solution of process parameters with SA and GA optimization. The process parameters and machining performance considered in this work deal with the real experimental data in the abrasive waterjet machining (AWJ) process. The results of this study showed that both of the proposed integration systems managed to estimate the optimal process parameters, leading to the minimum value of machining performance when compared to the result of real experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA

In this study, Artificial Neural Network (ANN) and Simulated Annealing (SA) techniques were integrated labeled as integrated ANN-SA to estimate optimal process parameters in abrasive waterjet (AWJ) machining operation. The considered process parameters include traverse speed, waterjet pressure, standoff distance, abrasive grit size and abrasive flow rate. The quality of the cutting of machined-...

متن کامل

Estimation of optimal machining control parameters using artificial bee colony

Modern machining processes such as abrasive waterjet (AWJ) are widely used in manufacturing industries nowadays. Optimizing the machining control parameters are essential in order to provide a better quality and economics machining. It was reported by previous researches that artificial bee colony (ABC) algorithm has less computation time requirement and offered optimal solution due to its exce...

متن کامل

مدل‌سازی اجزای محدود برش ماده فولادی با جت آب دارای ذرات برنده

Numerical modeling of machining processes is of significance in the parametric analysis and optimization of their performance. In this paper, a finite element-based model of abrasive waterjet (AWJ) cutting of a ductile material is presented with the help of an explicit, nonlinear finite element method. In this model, both solid-solid interaction and fluid-structure interaction are considered. T...

متن کامل

Abrasive Water Jet Machining - A Review on Current Development

Abrasive waterjet machining (AWJM) is one of the modern machining process for difficult to cut materials. It is an environment friendly and relatively inexpensive process with reasonably high material removal rate. In all the machining processes the quality of the work piece is depends on various design parameters. The process parameters which mainly affect the quality of cutting in AWJM are Hy...

متن کامل

Optimization of Abrasive Waterjet Machining Process Parameters Using Orthogonal Array with Grey Relational Analysis

In the present work, the optimization of the abrasive water jet machining (AWJM) process parameters with multiple performance characteristics based on the orthogonal array with the grey relational analysis (GRA) has been studied. Optimization of multiple response characteristics is far more complex compared to optimization of single performance characteristic. A grey relational grade (GRG) calc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011